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Stars indicate difficult questions.
Exercise 1

Let c ∈ {2, 3}, consider A(1, c).

(i) Describe the cluster variables you get in these cases.

(ii) If you associate x1 ↔ −α1, x2 ↔ −α2 and positive roots for denominators as in Remark 1.2(3),
what root system do you get?

Exercise 2

Prove the following result: Every cluster variable xm in A(b, c) is an element of the ring of Laurent
polynomials Z

[
x±1
1 , x±1

2

]
.

Exercise 3

(⋆⋆) Consider A(b, c) for bc ⩾ 4 (b, c ∈ Z⩾0). Argue that one gets infinitely many cluster variables.

Exercise 4

Show that there is a bijection between cluster quivers with n mutable and m−n frozen vertices and
extended skew-symmetric matrices of size m× n.

Exercise 5

Consider the quiver Q : 1 2 3 with three mutable vertices. Work out µ1(µ2(Q)),
µ3(µ2(Q)), µ1(Q) and µ3(Q).

Exercise 6

Consider the quiver

Q :

1 2

3

3

33

(i) Determine the mutated cluster quivers µi(Q) where i ∈ {1, 2, 3} .

(ii) Determine the mutated cluster quivers µi(µ1(Q)) where i ∈ {1, 2, 3} .

(iii) Describe the quivers one obtains by applying further mutations. Can you come up with a
pattern?
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Exercise 7

Prove that mutations are involutive i.e. for any quiver Q and k a mutable vertex in Q, we have
µk(µk(Q)) = Q.

Exercise 8

Consider the following quiver.

Q :

6 7 3

1 2

5 4

Compute the clusters, cluster variables and cluster algebra of Q.

Exercise 9

Consider the following quiver.

Q :

1 2

3

2

22

(i) Compute µi(Q) and their corresponding exchange relations for i ∈ {1, 2, 3}. Comment on your
result.

(ii) Specialise the initial cluster (x1, x2, x3) to xi = 1 for i ∈ {1, 2, 3}. Use the exchange relations to
find the specialised values of other clusters. Do several mutations.

(iii) (⋆) Show that for any cluster, its corresponding specialized values (a1, a2, a3) satisfy

a21 + a22 + a23 = 3a1a2a3.

Remark 1. Every such triple is therefore a Markov triple.

Exercise 10

Let (x,Q) be a seed and take n = m ≥ 3. Consider i and j distinct mutable vertices.

(i) Compute the ith cluster variable after applying mutations µi, µj and µi again.

(ii) Argue that the outcome is an element of Z[x±1
1 , . . . , x±1

n ].

(iii) What can you say about the coefficients?
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Exercise 11

Let Q be the Kronecker quiver:
Q : 1 22

Check that the cluster algebra A(Q) is not of finite type but that it is of finite mutation type. You
can use Exercise 4.
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