EXERCISE SHEET FOR "THE DYNKIN CLASSIFICATION"

MARKUS REINEKE

- **Exercise 1:** Consider the quiver $K_m \ 1 \stackrel{(m)}{\Rightarrow} 2$ (with *m* parallel arrows). Show that the representations of K_m with $V_1 = \mathbb{C}$ are classified up to equivalence by the reduced row echelon form of matrices.
- **Exercise 2:** Consider the quiver L_m with a single vertex *i* and two loops α, β : $i \to i$. Show that the classification of representations of L_m on $V_i = \mathbb{C}^2$ depends on five independent continuous parameters. More precisely, show that there are mutually non-equivalent representations for which

 $(\operatorname{tr}(f_{\alpha}), \operatorname{tr}(f_{\beta}), \det(f_{\alpha}), \det(f_{\beta}), \operatorname{tr}(f_{\alpha}f_{\beta})))$

assume arbitrary values.

- **Exercise 3:** Describe the path algebras of the quivers L_m , K_m and $\bullet \to \bullet \leftarrow \bullet$.
- **Exercise 4:** Work out some of the details and necessary verifications for the equivalence of categories between quiver representations and modules over the path algebra (well-definedness, compatibility with morphisms).
- **Exercise 5:** Determine the positive roots of a D_4 diagram by iterative completion of squares for the quadratic form

$$d_1^2 + d_2^2 + d_3^2 + d_4^2 - d_1d_4 - d_2d_4 - d_3d_4.$$

- **Exercise 6:** Verify the following property of the Zariski topology on an affine space \mathbb{C}^n : if \mathbb{C}^n is written as a disjoint union of finitely many locally closed subsets S_i , then precisely one of them is a dense subset.
- **Exercise 7:** Describe the orbit of the representation

$$\mathbb{C}^2 \xrightarrow{\mathrm{id}} \mathbb{C}^2 \xleftarrow{\mathrm{id}} \mathbb{C}^2$$

by explicit polynomial inequalities (Hint: describe the orbit by rank conditions).

- **Exercise 8:** Work out some of the details and necessary verifications for the equivalence of categories given by reflection functors (well-definedness, compatibility with morphisms, isomorphism of $S_i^+S_i^-$ to the identity).
- **Exercise 9:** Find a sequence (i_1, \ldots, i_6) in $\{1, 2, 3\}$ such that, for the quiver Q given by

$$1 \xrightarrow{} 2 \xrightarrow{} 3,$$

 i_k is a sink in $s_{i_{k-1}} \dots s_{i_1}Q$ for all $k = 1, \dots, 6$, and such that the

$$S_{i_1}^- \dots S_{i_{k-1}}^+ E_{i_k}$$

list all six positive roots of Q.

Exercise 10: Construct an indecomposable representation corresponding to the highest root of E_6 by applying a sequence of five reflection functors to the indecomposable of dimension vector (1, 1, 1, 1, 1, 1).