Sommersemester 2025

Prof. Dr. Alexander Ivanov (a.ivanov@rub.de) Ihsane Hadeg, Timm Peerenboom, Felix Zillinger

Spring school: Dynkin classification Day 5: Simple singularities

Exercise 1.

(1) Show that

$$\operatorname{SU}_2(\mathbb{C}) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \right\} : |\alpha|^2 + |\beta|^2 = 1 \right\}$$

is the subgroup of $\operatorname{SL}_2(\mathbb{C})$ consisting of elements letting invariant the standard Hermitian form $\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 \bar{y}_1 + x_2 \bar{y}_2$ on \mathbb{C}^2 . The group $\operatorname{SU}_2(\mathbb{C})$ is called the *complex special unitary group* (of dimension two).

- (2) Show that any finite subgroup of $SL_2(\mathbb{C})$ is conjugate to a subgroup of $SU_2(\mathbb{C})$.
- (3) Show that $SU_2(\mathbb{C})$ contains exactly one element of order 2.

Exercise 2. (Singularities of curves) Let X be the nodal curve given by the equation $y^2 = x^3 + x^2$.

- (1) Find a surjective (polynomial) map $\mathbb{A}^1 \to X$.
- (2) Let $P \in X$ be the singular point. Show that the completed local ring $\widehat{\mathcal{O}}_{X,P}$ of X at P is isomorphic (as \mathbb{C} -algebra) to $\mathbb{C}[\![x,y]\!]/(xy)$.
- (3)* Can you construct (many) more further plane curve singularities (and isomorphisms between some of them)?

Exercise 3. (Du Val singularity of type A_{n-1}) Let $n \ge 2$ and let ζ be a primitive complex root of unity of order n. Let $X = \mathbb{A}^2/G$, where $G = \langle \gamma \rangle \cong \mathbb{Z}/n\mathbb{Z}$ acts on \mathbb{A}^2 via $\gamma . x = \zeta x$, $\gamma . y = \zeta^{-1}y$. Let $P = (0,0) \in X$ be the singular point. Show that

$$\widehat{\mathcal{O}}_{X,P} = \mathbb{C}\llbracket x, y \rrbracket^G \cong \mathbb{C}\llbracket u, v, w \rrbracket / (u^2 + v^2 + w^n).$$

Exercise 4. (Du Val singularity of type D_n) Let $n \ge 2$. Let $G = \mathbb{D}_n$ be the binary dihedral group acting on \mathbb{C}^2 (as in the lecture). Let $X = \mathbb{C}^2/G$ and let $P = (0,0) \in X$ be the singular point. Show that

$$\widehat{\mathcal{O}}_{X,P} = \mathbb{C}\llbracket x, y \rrbracket^G \cong \mathbb{C}\llbracket u, v, w \rrbracket / (u^{n+1} + uv^2 + w^2).$$

(The full proof as in Exercise 2 might be lengthy. We do not require it.)

Exercise 5. (Blow up of the nodal curve) Let $X = \{y^2 = x^3 + x^2\} \subseteq \mathbb{A}^2$ be the nodal curve. Let $P \in X$ be the origin. Let $\operatorname{Bl}_P(\mathbb{A}^2) = \{(x, y), [u : v] \in \mathbb{A}^2 \times \mathbb{P}^1 : xv = yu\}$ be the blow up of \mathbb{A}^2 at P. Compute the strict transform \tilde{X} of X inside $\operatorname{Bl}_P(\mathbb{A}^2)$.

Exercise 6. (Blow-up Du Val singularities) Compute the blow-ups and the dual graphs of the Du Val singularities of type A_2, A_3 and D_4 .

Exercise 7. Prove that the singularities of type A_3 $(x^2 + y^2 + z^4 = 0)$ and D_3 $(x^2 + y^2 z + z^2 = 0)$ are isomorphic.