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Exercise 1. 1. Show that

SU2(C) =
{(

α β

−β α

) ∣∣∣∣ |α|2 + |β|2 = 1

}
is the subgroup of SL2(C) consisting of elements letting invariant the standard Hermitian
form

( , ) : C2 × C2 → C((
x1

x2

)
,

(
y1
y2

))
7→ x1y1 + x2y2

The group SU2(C) is called the complex special unitary group (of dimension two).

2. Show that any finite subgroup of SL2(C) is conjugate to a subgroup of SU2(C).

3. Show that SU2(C) contains exactly one element of order 2.

Proof. 1. For

A =

(
a b
c d

)
,

we calculate((
ax1 + bx2

cx1 + dx2

)
,

(
ay1 + by2
cy1 + dy2

))
= (ax1 + bx2) · (ay1 + by2) + (cx1 + dx2) · (cy1 + dy2)

= aax1y1 + abx1y2 + bax2y1 + bbx2y2 + ccx1y1 + cdx1y2 + dcx2y1 + ddx2y2

= (aa+ cc)x1y1 + (ab+ cd)x1y2 + (ba+ dc)x2y1 + (bb+ dd)x2y2
!
= x1y1 + x2y2

From this calculation, it is clear that if A ∈ SU2(C), then ⟨Ax,Ay⟩ = ⟨x, y⟩ for all x, y ∈ C2.
Setting x1 = y1 = 1 and x2 = y2 = 0 gives us aa+ cc = |a|2 + |c|2 = 1 and analogously we
get |b|2 + |d|2 = 1. Setting x1 = y2 = 1 and x2 = y1 = 0 we get ab + cd = 0. Using the
assumption ad− bc = 1, we multiply this with a to get:

a = aad− abc

= (1− cc)d+ cdc

= d

Analogously, we get c = −b.

2. Let G ⊆ SL2(C) be finite and consider C2 with the standard Hermitian form (, ). Define

⟨x, y⟩ := 1

|G|
·
∑
g∈G

(gx, gy) ∀x, y ∈ C2.

Then:

• ⟨x, y⟩ ≥ 0 for all x, y ∈ C2, since (a, b) ≥ 0 for all a, b ∈ C2.
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• If ⟨x, y⟩ = 0, this implies that x = 0. This follows since the assumption implies that
(gx, gx) = 0 for all g ∈ G and hence gx = 0 for all g ∈ G since (, ) is a Hermitian
form. This then implies that x = 0.

• We calculate

⟨x, y⟩ = 1

|G|
∑
g∈G

(gx, gy) =
1

|G|
∑
g∈G

(gy, gx) = ⟨y, x⟩.

This implies that ⟨, ⟩ is a Hermitian form. Now let h ∈ G. Then

⟨hx, hy⟩ = 1

|G|
∑
g∈G

(ghx, ghy)
g′:=gh
=

1

|G|
∑
g′∈G

(g′x, g′y) = ⟨x, y⟩.

Then, G ⊆ SU(C2, ⟨, ⟩) :=
{
h ∈ SL2(C)

∣∣ ⟨hx, hy⟩ = ⟨x, y⟩ ∀x, y ∈ C2
}

and since all Her-
mitian forms are isomorphic, there is an isomorphism SU(C2, ⟨, ⟩) ∼= SU2(C) given by
conjugation with a matrix S, which then implies that the conjugate of G is a (finite) sub-

group of SU2(C). Indeed, we can find a C-linear isomorphism S : C2
∼=−→ C2 such that

⟨x, y⟩ = (Sx, Sy). Then, if g ∈ SU2(C, ⟨, ⟩), then SgS−1 ∈ SU(C2, (, )), by the following
calculation:

(x, y) = ⟨S−1x, S−1y⟩ = ⟨gS−1x, gS−1y⟩ = (SgS−1x, SgS−1y).

3. We calculate (
α β

−β α

)2

=

(
α2 − |β|2 αβ + αβ

−βα− βα α2 − |β|2
)

!
=

(
1 0
0 1

)
If we assume a matrix is of order 2, the above calculation implies that α2 = α2 and hence
α = ±α, implying either α ∈ R or α ∈ Ri. Moreover, α ̸= 0 since the contrary would
imply |β|2 = −1, which is an obvious contradiction. If we assume that α ∈ Ri, we see that
the term α2 − |β|2 is negative, hence deriving a contradiction. Now if α ∈ R, we see that

β = 0, since aβ + αβ = 2αβ
!
= 0. Moreover, we see that α = ±1 since α2 − |β|2 = α2 !

= 1.

Exercise 2. Let X be the nodal curve given by the equation y2 = x3 + x2.

1. Find a surjective (polynomial) map A1 → X.

2. Let P ∈ X be the singular point. Show that the completed local ring ÔX,P of X at P is
isomorphic (as a C-algebra) to C[[x, y]]/(xy).

Proof. 1. We take the polynomial map

A1 → X

(t) 7→ (t2 − 1, t(t2 − 1))

2. We have an isomorphism

ÔX,P
∼= C[[x, y]]/(y2 − x3 − x2).

Now we note that we have the element
√
1 + x := 1+ 1

2x+
∑∞

k=1(−1)k−1 (2k−3)!
22k−2k!(k−2)!

xk ∈
C[[x, y]] and hence there is a factorization y2−x3−x2 = (y−x

√
1 + x)(y+x

√
1 + x). Now

we take the map

C[[x, y]] → C[[x, y]]
x 7→ x

√
1 + x

y 7→ y

which induces an isomorphism

C[[x, y]]/(y2 − x2
√
1 + x

2
) ∼= C[[x, y]]/(y2 − x2).
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Finally, the map

C[[u, v]] → C[[x, y]]
u 7→ x− y

v 7→ x+ y

induces an isomorphism

C[[x, y]]/(y2 − x2) ∼= C[[u, v]]/(uv).

Exercise 3. Let n ≥ 2 and let ζ be a primitive complex root of unity of order n. Let X = A2/G,
where G = ⟨γ⟩ ∼= Z/nZ acts on A2 via γ.x = ζx, γ.y = ζ−1y. Let P = (0, 0) ∈ X be the singular
point. Show that

ÔX,P = C[[x, y]]G ∼= C[[u, v, w]]/(u2 + v2 + wn).

Proof. A simple comparison of coordinates shows that

C[[x, y]]G = C[[xn, yn, xy]].

We now claim that there is an isomorphism

C[[xn, yn, xy]] ∼= [[x, y, z]]/(xy − zn).

We take the surjection
φ : C[[u, v, w]] ↠ C[[xn, yn, xy]].

It is obvious, that (uv − wn) ⊂ ker(φ). We now want to show the other inclusion. Let f =∑
i,j,k≥0 aijku

ivjwk ∈ ker(φ). Subtracting elements of (uv − wn) from f , we may assume that
aijk = 0 unless 0 ≤ k < n (here we use implicitly that the ideal is closed). Then

0 = φ(f) =
∑

i,j,k≥0

aijkx
ni+kynj+k =

∑
i′,j′≥0

 ∑
I(i′,j′)

aijk

xi′yj
′

where
I(i′, j′) := {(i, j, k) |ni+ k = i′nj + k = j′, aijk ̸= 0}.

Now we see that for all i′, j′,
∑

I(i′,j′) aijk = 0. We claim that f = 0. Indeed, if I(i′, j′) ̸= ∅, then

i′− j′ = n(i− j), so i′ ≡ j′ modulo n. Moreover, as 0 ≤ k ≤ n−1, k = i′−n ·
⌊
i′

n

⌋
= j′−n ·

⌊
j′

n

⌋
is uniquely dtermined by i′, j′. Also, i = i′−k

n , j = j′−k
n . This shows that I(i′, j′) either contains

one element or is empty. But I(i′, j′) containing one element is a contradiction to the assumption
that

∑
I(i′,j′) aijk = 0. This shows that I(i′, j′) = ∅ for all i′, j′ and hence f = 0. Finally, the

isomorphism

C[[x, y, z]] → C[[u, v, w]]
x 7→ −u+ iv

y 7→ −u− iv

z 7→ w

induces an isomorphism

C[[x, y, z]]/(xy − zn) ∼= C[[u, v, w]]/(u2 + v2 + wn).

Exercise 4. Let n ≥ 2. Let G = Dn be the binary dihedral group acting on C2 (as in the
lecture). Let X = C2/G and let P = (0, 0) ∈ X be the singular point. Show that

ÔX,P = C[[x, y]]G ∼= C[[u, v, w]]/(un+1 + uv2 + w2).
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Proof. The binary dihedral group acts as

σ :

{
x 7→ ζx

y 7→ ζ−1y
τ :

{
x 7→ −y

y 7→ x

where ζ is a primitive 2n-th root of unity. Now, one can verify that the set of invariant monomials
is

F = x2n + y2n, H = xy(x2n − y2n), I = x2y2.

They satisfy the relation

H2 = x2y2(x4n + y4n − 2x2ny2n) = IF 2 − 4In+1.

We now get isomorphisms

ÔX,P = C[[x, y]]G = C[[x2n + y2n, xy(x2n − y2n), x2y2]]

(∗)∼= C[[H, I, F ]]/(H2 − IF 2 + 4In+1)

∼= C[[u, v, w]]/(un+1 + uv2 + w2).

The isomorphism (*) can either be seen by an explicit calculation as in exercise 3 or using the
fact that a surjective ringhomomorphism A → B is an isomorphism, if dim A = dim B < ∞ and
A is an integral domain.

Exercise 5. Let X =
{
y2 = x3 + x2

}
⊆ A2 be the nodal curve. Let P ∈ X be the origin. Let

BLP (A2) =
{
(x, y), [u : v] ∈ A2 × P1

∣∣xv = yu
}
be the blowup of A2 at P . Compute the strict

transform X̃ of X inside BLP (A2).

Proof. We take the map π : BLP (A2) → A2 and take the restriction πv to the locus where v ̸= 0.
Then:

πv : {(x, y), [u : 1] |x = yu} → A2

and

π−1
v (X) =

{
(x, y), [u : 1]

∣∣x = yu, y2 = x3 + x2
}

=
{
(yu, y), [u : 1]

∣∣ y2 = y3u3 + y2u2
}

=
{
y2 = 0

}
∪
{
1 = yu3 + u2

}︸ ︷︷ ︸
part of X̃ on {v ̸=0}

.

We then get
X̃ ∩ {v ̸= 0} =

{
1 = yu3 + u2

}
and

X̃ ∩ {v ̸= 0} ∩ E =
{
1 = u2

}
= {(0, 0), [±1 : 1]}.

Exercise 6. Compute the blow-ups and the dual graphs of the Du Val singularities of type
A2, A3 and D4.

Proof. We take the blow up

BLP (A3) = {(x, y, z), [u : v : w] |xv = yu, xw = zu, yw = zv}.

We recall the the charts:

πu : {(x, y, z), [1 : v : w] |xv = y, xw = z, yw = zv} → A3

πv : {(x, y, z), [u : 1 : w] |x = yu, xw = zu, yw = z} → A3

πw : {(x, y, z), [u : v : 1] |xv = yu, x = zu, y = zv} → A3
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We now take X1 = V (x2 + y2 + z3) ⊂ A3 and get

π−1
u (X1) =

{
(x, y, z), [1 : v : w]

∣∣x2 + y2 + z3 = 0, xv = y, xw = z, yw = zv
}

=
{
(x, xv, xw), [1 : v : w]

∣∣x2 + x2v2 + x3w3 = 0
}

=
{
x2 = 0

}
∪
{
1 + v2 + xw3 = 0

}
π−1
v (X1) =

{
(x, y, z), [u : 1 : w]

∣∣x2 + y2 + z3 = 0, x = yu, xw = zu, yw = z
}

=
{
(yu, y, yw), [u : 1 : w]

∣∣ y2u2 + y2 + y3w3 = 0
}

=
{
y2 = 0

}
∪
{
u2 + 1 + yw3

}
π−1
w (X1) =

{
(x, y, z), [u : v : 1]

∣∣x2 + y2 + z3 = 0, xv = yu, x = zu, y = zv
}

=
{
(zu, zv, z), [u : v : 1]

∣∣ z2u2 + z2v2 + z3 = 0
}

=
{
z2 = 0

}
∪
{
u2 + v2 + z = 0

}
We use the Jacobian criterion for the first chart to get the system

w3 = 0

2v = 0

3xw2 = 0

which we see has no solutions, so this chart is smooth. Using the Jacobian criterion for the
second chart gives the same result. Using the Jacobian criterion for the third chart gives us

2u = 0

2v = 0

1 = 0

which also has no solution, so this is also smooth. We now take the exceptional divisor

E0 = X̃1 ∩ E.

Its intersections with the first two charts are of the form {[1 : ±i : w]}, while its intersection with
the third chart is of the form {[u : ±iu : 1]}. This shows there are two copies of P1, intersecting
in the point [0 : 0 : 1] and hence the Dynkin diagram is of the form

A2

We now take X2 = V (x2 + y2 + z4) ⊂ A3 and get

π−1
u (X2) =

{
(x, y, z), [1 : v : w]

∣∣x2 + y2 + z4 = 0, xv = y, xw = z, yw = zv
}

=
{
(x, xv, xw), [1 : v : w]

∣∣x2 + x2v2 + x4w4 = 0
}

=
{
x2 = 0

}
∪
{
1 + v2 + x2w4 = 0

}
π−1
v (X2) =

{
(x, y, z), [u : 1 : w]

∣∣x2 + y2 + z4 = 0, x = yu, xw = zu, yw = z
}

=
{
(yu, y, yw), [u : 1 : w]

∣∣ y2u2 + y2 + y4w4 = 0
}

=
{
y2 = 0

}
∪
{
u2 + 1 + y2w4

}
π−1
w (X2) =

{
(x, y, z), [u : v : 1]

∣∣x2 + y2 + z4 = 0, xv = yu, x = zu, y = zv
}

=
{
(zu, zv, z), [u : v : 1]

∣∣ z2u2 + z2v2 + z4 = 0
}

=
{
z2 = 0

}
∪
{
u2 + v2 + z2 = 0

}
Using the Jacobian criterion on the first chart gives us

2xw4 = 0

2v = 0

3x2w3 = 0

which has no solutions. The same applies to the second chart. For the third chart, we get
2u = 0

2v = 0

2z = 0
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which shows that there is a unique singular point u = v = z = 0, or in global coordinates
(0, 0, 0), [0 : 0 : 1]. By calculating the exceptional fibre, we get the intersection with first and
second chart {[1 : ±i : w]} and the intersection with the third chart {[u : ±iu : 1]}, giving us two
copies of P1 as above.

We now blow this up again (for brevity, we again use the coordinates x, y, z): We blow up
the surface X3 = V (x2+ y2+ z2) ⊂ A3 with exceptional divisor E0 having the coordinates z = 0
and x = ±iy.

π−1
u (X3) =

{
(x, y, z), [1 : v : w]

∣∣x2 + y2 + z2 = 0, xv = y, xw = z, yw = zv
}

=
{
(x, xv, xw), [1 : v : w]

∣∣x2 + x2v2 + x2w2 = 0
}

=
{
x2 = 0

}
∪
{
1 + v2 + w2 = 0

}
π−1
v (X3) =

{
(x, y, z), [u : 1 : w]

∣∣x2 + y2 + z2 = 0, x = yu, xw = zu, yw = z
}

=
{
(yu, y, yw), [u : 1 : w]

∣∣ y2u2 + y2 + y2w2 = 0
}

=
{
y2 = 0

}
∪
{
u2 + 1 + w2

}
π−1
w (X3) =

{
(x, y, z), [u : v : 1]

∣∣x2 + y2 + z2 = 0, xv = yu, x = zu, y = zv
}

=
{
(zu, zv, z), [u : v : 1]

∣∣ z2u2 + z2v2 + z2 = 0
}

=
{
z2 = 0

}
∪
{
u2 + v2 + 1 = 0

}
The Jacobian criterion gives for the first chart{

2u = 0

2v = 0

which has no solution and the same applies to the other charts, showing that this are no singular
points. Since all three charts of X̃3 are symmetric, the exceptional divisor E is smooth and hence
E ∼= P1. This gives us the dual graph

A3

Now we take X4 = V (x2 + y2z + z3) ⊆ A3 and get

π−1
u (X4) =

{
(x, y, z), [1 : v : w]

∣∣x2 + y2z + z3 = 0, xv = y, xw = z, yw = zv
}

=
{
(x, xv, xw), [1 : v : w]

∣∣x2 + x2v2xw + x3w3
}

=
{
x2 = 0

}
∪
{
1 + xv2w + xw3 = 0

}
π−1
v (X4) =

{
(x, y, z), [u : 1 : w]

∣∣x2 + y2z + z3 = 0, x = yu, xw = zu, yw = z
}

=
{
(yu, y, yw), [u : 1 : w]

∣∣ y2u2 + y2yw + y3w3 = 0
}

=
{
y2 = 0

}
∪
{
u2 + yw + yw3

}
π−1
w (X4) =

{
(x, y, z), [u : v : 1]

∣∣x2 + y2z + z3 = 0, xv = yu, x = zu, y = zv
}

=
{
(zu, zv, z), [u : v : 1]

∣∣ z2u2 + z2v2z + z3 = 0
}

=
{
z2 = 0

}
∪
{
u2 + v2z + z = 0

}
The Jacobian criterion gives for the first chart

v2w + w3 = 0

2xvw = 0

xv2 + 3xw2 = 0

A quick investigation shows that this has no solution. For the second chart we get
2u = 0

w + w3 = 0

y + 3w2y = 0

This has three solutions {(0, 0, 0), (0, 0, i), (0, 0,−i)}. For the third chart, we get
2u = 0

2vz = 0

v2 + 1 = 0
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which has the solutions (0, i, 0), (0,−i, 0) (in global coordinates, those are already included in
the above!). Calculating the exceptional fibre, we get an empty intersection with the first chart,
the intersection with the second chart {[0 : 1 : w]} and the intersection with the third chart
{[0 : v : 1]}, giving us the exceptional divisor E ∼= P1. Now, we blow up at the first singular
point (0, 0, 0)[0 : 1 : 0]. We have X5 = V (x2 + yz + yz3) and get

π−1
u (X5) =

{
(x, y, z), [1 : v : w]

∣∣x2 + yz + yz3 = 0, xv = y, xw = z, yw = zv
}

=
{
(x, xv, xw), [1 : v : w]

∣∣x2 + xvxw + xvx3w3 = 0
}

=
{
x2 = 0

}
∪
{
1 + vw + x2vw3 = 0

}
π−1
v (X5) =

{
(x, y, z), [u : 1 : w]

∣∣x2 + yz + yz3 = 0, x = yu, xw = zu, yw = z
}

=
{
(yu, y, yw), [u : 1 : w]

∣∣ y2u2 + yyw + yy3w3 = 0
}

=
{
y2 = 0

}
∪
{
u2 + w + y2w3

}
π−1
w (X5) =

{
(x, y, z), [u : v : 1]

∣∣x2 + yz + yz3 = 0, xv = yu, x = zu, y = zv
}

=
{
(zu, zv, z), [u : v : 1]

∣∣ z2u2 + zvz + zvz3 = 0
}

=
{
z2 = 0

}
∪
{
u2 + v + z2v

}
The Jacobian criterion gives for the first chart

2xvw3 = 0

w + x2w3 = 0

v + 3w2x2v = 0

which has no solution. For the second chart, we get
2u = 0

1 + 3w2y2 = 0

2yw3 = 0

which also has no solutions. For the third chart, we get
2u = 0

1 + z2 = 0

2zv = 0

which has two singularities (0, 0, i), (0, 0,−i) (which do not lie in the exceptional divisor and
come from the above singularities!). We calculate the exceptional divisor: The intersection with
the first chart is

{
[1 : v2 : v]

∣∣ v ̸= 0
}
, the intersection with the second chart is

{
[u : 1 : −u2]

}
and

the intersection with the third chart is
{
[[u : −u2 : 1]]

}
, giving us P1.

Changing coordinates, we see that the other two singularities are of this form as well, giving
us the dual graph

D4

.

Exercise 7. Prove that the singularities of type A3 (given by
{
x2 + y2 + z4 = 0

}
) and D3 (given

by
{
x2 + y2z + z2 = 0

}
) are isomorphic.

Proof. There is an isomorphism

C[[x, y, z]] → C[[x, y, z]]
x 7→ x

y 7→ z +
1

2
y2

z 7→ i+ 1

2
y

which induces an isomorphism

C[[x, y, z]]/(x2 + y2z + z2) ∼= C[[x, y, z]]/(x2 + y2 + z4).

Alternatively, we can use that D1 (which is of type D3) and the group of type A3 are conjugated.
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